Resources » Knowledge Sharing » Question Papers

Karnataka 2nd PUC MATHEMATICS (June 2008) Question Paper


Last Updated:   Category: Question Papers    
Author: Member Level: Diamond    Points: 10 (Rs 1)


Karnataka Pre university 2 year Mathematics Question Paper.



Code No. 35

June, 2008
MATHEMATICS

Time : 3 Hours 15 Minutes Max. Marks : 100

Instructions : i) The question paper has five Parts – A, B, C, D and E.
Answer all the parts.
ii) Part – A carries 10 marks, Part – B carries 20 marks,
Part – C carries 40 marks, Part – D carries 20 marks and
Part – E carries 10 marks.

PART – A

Answer all the ten questions. 10 × 1 = 10
1. Find the number of incongruent solutions of 9x ≡ 21 ( mod 30 ).
2. Evaluate
4321     4322
4323     4324.
3. In a group
( )
 Z 6 ‚ + mod 6  , find 2 +
6 4 – 1 + 6 3 – 1.
4. Find the position vector of the point P which is the mid-point AB where
the position vectors of A and B are
 ^ i +
 ^ j + 2 ^ k and 3 ^ i – 3 ^ j + 2 ^ k .
5. Find the equation to a circle whose centre is ( a, 0 ) and touching the y-
axis.
6. Find the equation to directrix of ( x + 1 )
 2 = – 4 ( y – 3 ).
7. Find the value of cos – 1 ( sin 330° ) .Code No. 35 10
8. If 1, ω, ω 2 are the cube roots of unity, find the value of ( )  1 + ω – ω 2 2.
9. If y = e  x + x  e , find
dy dx.
10. Evaluate ⌡  ⌠
 e x 1 + tan x
cos x dx.

PART – B

Answer any ten questions. 10 × 2 = 20

11. Find the G.C.D. of 352 and 891.
12. Find the characteristic roots of the matrix
1     4
 
3     2
  .
13. Prove that a group of order three is Abelian.
14. Find the volume of the parallelopiped whose co-terminus edges are the
vectors
 ^ i + 3 ^ j + 2 ^ k , 2 ^ i –
 ^ j + 3 ^ k and ^ i + ^ j + ^ k .
15. Find the equation to the parabola whose focus is ( 3, 2 ) and its directrix
is x = 1.
16. Prove that
sin  2 tan – 1 1 – x 1 + x = 1 – x 2
17. Find the equation of a circle passing through the origin, having its centre
on the line y = x and cutting orthogonally the circle
x 2 + y 2 – 4x – 6y + 10 = 0.
18. Prove that ( 1 – i )
 9 = 16 – 16i.
19. If y = log e
1 – cos x 1 + cos x, then prove that dy/dx = 2 cosec x.
20. Find the point on the curve y 2 = x the tangent at which makes an angle
of 45° with the x-axis.
21. Evaluate ⌡ ⌠01 x ( 1 – x )7 dx.
22. Form the differential equation by eliminating the arbitrary constant
( y – 2 )2 = 4a ( x + 1 ).

PART – C

I. Answer any three questions : 3 × 5 = 15

23. a) Find the number of positive divisors and sum of all such
positive divisors of 756. 3
b) If a/bc and ( a, b ) = 1, then prove that a/c. 2Code No. 35 12
24. Solve by matrix method :
3x + y + 2z = 3
2x – 3y – z = – 3
x + 2y + z = 4. 5
25. Prove that the set z of integers is an Abelian group under binary
operation ✳ defined by a ✳ b = a + b + 3, ∀ a, b ∈ z. 5
26. a) If
→ a = ^ i – 2 ^ j – 3 ^ k ,
→ b = 2 ^ i + ^ j – ^ k and
→ c = ^ i +3 ^ j – 2 ^ k , find a unit vector perpendicular to
→ a and in thesame plane on → b and → c . 3
b) Find the area of a parallelogram whose diagonals are the vectors
2 ^ i + ^ j + ^ k and ^ i – 2 ^ j + 3 ^ k . 2

II. Answer any two questions : 2 × 5 = 10

27. a) Find the length of the tangent from the point ( ) x 1 ‚  y 1  to the
circle x 2 + y 2 + 2gx + 2fy + c = 0. 3
b) Find the equations of tangent to the circle
x 2 + y 2 – 2x – 4y – 4 = 0, which are perpendicular to
3x – 4y + 6 = 0. 213 Code No. 35
[ Turn over
28. a) Find the focus and equation to the directrix of the ellipse
9x 2 + 5y 2 – 36x + 10y – 4 = 0. 3
b) Find the equation to the hyperbola in the standard form
x 2 a 2 – y 2b 2 = 1, given that length of latus rectum = 14 3 ande = 4 3. 2
29. a) If tan – 1 x + tan – 1 y + tan – 1 z = π2 , prove that xy + yz + zx = 1. 3
b) Find the general solution of sin 2 θ – cos 2θ = 5 4 . 2

III. Answer any three of the following questions : 3 × 5 = 15
30. a) Differentiate a x w.r.t. x by first principles. 3
b) If y = tan – 1 4x 4 – x 2  , prove that dy dx=4 4 + x 2 . 2
31. a) If y = ( )  sin – 1 x 2+ ( )  cos – 1 x 2 prove that 1 – x 2  y 2 – xy 1 – 4 = 0. 3 b) If x = 3 sin 2θ + 2 sin 3θ, and y = 2 cos 3θ – 3 cos2θ ,prove that dy/dx= – tan θ2
32. a) Prove that in the curve y = e x a the subnormal varies as the
square of the ordinate and subtangent is constant. 3
b) Evaluate ⌡  ⌠0π/2 sin x . cos x 1 + sin 4 x dx. 2
33. a) Evaluate ⌡  ⌠2 – 3 tan x 1 + 2 tan x dx. 3
b) Evaluate ⌡⌠1  1 + e x   ( )  1 – e – x dx. 2
34. Find the area of the ellipse 9x 2 + 16y 2 = 144 by integration. 5

PART – D

Answer any two of the following questions : 2 × 10 = 20
35. a) Define hyperbola as a locus and derive the standard equation of the
hyperbola in the form x 2a 2 – y 2b 2 = 1. 6
b) Prove that 1     a      a 2a 2    1      aa     a 2    1= ( )  a 3 – 1  2
36. a) If cos α + cos β + cos γ = 0 = sin α + sin β + sin γ , prove that
i) cos 2α + cos 2β + cos 2γ = 0
sin 2α + sin 2β + sin 2γ = 0
ii) cos 2 α + cos 2 β + cos 2 γ = 3 2 sin 2 α + sin 2 β + sin 2 γ 2 . 6
b) Prove that [ ]  
→ a ×  → b  
→ b ×  → c   
→ c  ×  → a  = [ ]  → a  → b  → c   2 . 4
37. a) The surface area of a sphere is increasing at the rate of 8 sq.cm/sec.
Find the rate at which the radius and the volume of the sphere are
increasing when the volume of the sphere is
500 π
3 c.c. 6
b) Find the general solution of sin θ + sin 2θ + sin 3θ = 0. 4
38. a) Prove that ⌡  ⌠0
π/2 cos 2 x1 + sin x cos x dx = π 3 3. 6
b) Find the general solution of the differential equation
xy dy/dx = 1 + y 21 + x 2 ( )  1 + x + x 2  . 4


Did you like this resource? Share it with your friends and show your love!




Responses to "Karnataka 2nd PUC MATHEMATICS (June 2008) Question Paper"

No responses found. Be the first to respond...

Feedbacks      

Post Comment:




  • Do not include your name, "with regards" etc in the comment. Write detailed comment, relevant to the topic.
  • No HTML formatting and links to other web sites are allowed.
  • This is a strictly moderated site. Absolutely no spam allowed.
  • Name:   Sign In to fill automatically.
    Email: (Will not be published, but required to validate comment)



    Type the numbers and letters shown on the left.


    Submit Article     Return to Article Index

    Copyright © SpiderWorks Technologies Pvt Ltd., Kochi, India
    All Rights Reserved.