Online Members

More...
Awards & Gifts
Active Members
Today
    Last 7 Days
      more...



      Resources » Knowledge Sharing » Question Papers

      Karnataka 2nd PUC MATHEMATICS(July, 2009) Question Paper


      Posted Date: 16-Aug-2010  Last Updated:   Category: Question Papers    
      Author: Member Level: Diamond    Points: 10 (Rs 1)


      Karnataka Pre University Board 2nd year MATHEMATICS July, 2009 Question Paper.



      Code No. 35

      June/July, 2009
      MATHEMATICS

      Time : 3 Hours 15 Minutes Max. Marks : 100

      Instructions : i) The question paper has five Parts – A, B, C, D and E. Answer all the Parts.

      ii) Part – A carries 10 marks, Part – B carries 20 marks,
      Part – C carries 40 marks, Part – D carries 20 marks and
      Part – E carries 10 marks.

      PART – A

      Answer all the ten questions : 10 × 1 = 10
      1. 3x ≡ 2 ( mod 6 ) has no solution. Why ?
      2. If direction cosines of → a are 1 3 2 3 and n, find n.
      3. On I ( the set of all integers ), and operation ✳ is defined by a ✳ b = a b ,
      ∀ a, b ∈ I. Examine whether ✳ is binary or not on I.
      4. A and B are square matrices of the same order and | A | = 4, | B | = 5.
      Find | AB |.
      5. Given two circles with radii r 1 , r 2 and having d as the distance
      between their centres, write the condition for them to touch each other
      externally.
      6. Find the sum of the focal distances of any point on 4x 2 + 9y 2 = 36.
      7. Evaluate sin – 1 ( sin 130° ) .Code No. 35 10
      8. Find the least positive integer n for which 1 – i 1 + i n= 1.
      9. Given the function f ( x ) = | x |, find L f
        l
      ( 0 ) .
      10. Evaluate ⌡ ⌠– π/4 π/4( )  sin 3 x + cos x  dx .

      PART – B

      Answer any ten questions : 10 × 2 = 20

      11. If ca ≡ cb ( mod m ) and c, m are relatively prime then prove that
      a ≡ b ( mod m )
      12. For the matrix A = cos θ sin θ– sin θ   cos θ verify that AA lis symmetric.
      13. Define a semigroup. Examine whether { 1, 2, 3, 4 } is a semigroup under
      'addition modulo 5' ( )+ 5  .
      14. On Q + ( set of all +ve rationals ) , an operation ✳ is defined by
      a ✳ b = ab 3 , ∀ a, b ∈ Q + . Find the identity element and a – 1 in Q + .
      15. If λ ^ i +
       ^ j + 2 ^ k , 2 ^ i – 3 ^ j + 4 ^ k and ^ i + 2 ^ j – ^ k are coplanar, find λ.
      16. Find the equation of the circumcircle of the triangle formed by
      ( 0, 0 ), ( 3, 0 ) & ( 0, 4 ).11 Code No. 35
      17. Solve tan – 1 x = sin – 1
      1 2 – cot – 1 13
      18. Show that the real and imaginary parts of 5e i tan – 1 4 are 3, 4
      respectively.
      19. If y = sin – 1 x – 1
      x + 1 + sec – 1 x + 1x – 1
      prove that dy dx = 0.
      20. At any point on the curve x m y n = a m + n , show that the subtangent
      varies as the abscissa of the point.
      21. Evaluate ⌡ ⌠ 
       
      [ sin ( log x ) + cos ( log x ) ] dx.
      22. Form the differential equation of the family of circles touching y-axis at
      origin.

      PART – C

      I. Answer any three questions : 3 × 5 = 15

      23. a) Define GCD of two integers a and b. Find the GCD of 275 and
      726. 3
      b) Find the number of positive divisors of 252 by writing it as the
      product of primes ( prime power factorisation ). 2Code No. 35 12
      24. Solve by matrix method : 2x – y = 10
      x – 2y = 2
      Also, verify that the coefficient matrix of this system satisfies Cayley-
      Hamilton theorem. 5
      25. Prove that a non-empty subset H of a group G, is a subgroup of G, if
      ∀ a, b ∈ H, ab – 1 ∈ H. Hence prove that, if H and K are subgroups
      of a group G then H

      I K also, is a subgroup of G. 5
      26. a) Given
      → a = 2^ i + ^ j + ^ k ,
      → b = ^ i + 2^ j – ^ k , find a unit
      vector perpendicular to
      → a and coplanar with
      → a and
      → b . 3
      b) If
      → a +
      → b +
      → c =
      → 0 , prove that
      → a ×
      → b =
      → b ×
      → c =
      → c ×
      → a .
      2

      II. Answer any two questions : 2 × 5 = 10

      27. a) Derive the condition for the two circles
      x 2 + y 2 + 2 g 1 x + 2 f
       1 y + c 1 = 0 and
      x 2 + y 2 + 2 g 2 x + 2 f
       2 y + c 2 = 0 to cut each other
      orthogonally. 3
      b) ( 1, 2 ) is the radical centre of three circles. One of the circles is
      x 2 + y 2 – 2x + 3y = 0. Examine whether the radical centre
      lies inside or outside all the circles. 213 Code No. 35
      [ Turn over
      28. a) Given the equation of the conic
      9x 2 + 4y 2 – 18x + 16y – 11 = 0, find its centre and the area
      of its auxiliary circle. 3
      b) Obtain the equation of the directrix of the parabola x = 2t
       2 ,
      y = 4t. 2
      29. a) If sin – 1 x + sin – 1 y + sin – 1 z =
      π
      2 , prove that
      x 2 + y 2 + z 2 + 2xyz = 1. 3
      b) Find the general solution of tan 2θ tan θ = 1. 2

      III. Answer any three of the following questions : 3 × 5 = 15

      30. a) Differentiate sin 2x w.r.t. x from first principle. 3
      b) Differentiate ( sin x )
       log x w.r.t x. 2
      31. a) Differentiate cos – 1 ( )  4x 3 – 3x  w.r.t. cos – 1 ( )  1 – 2x 2  . 3
      b) Show that the curves y = 6 + x – x 2 and y ( x – 1 ) = x + 2
      touch each other at ( 2, 4 ). 2
      32. a) If y = sin ( )  m cos – 1 x  , prove that
      ( )  1 – x 2  y 2 – xy 1 + m 2 y = 0. 3
      b) Evaluate ⌡⌠ 1 x ( )  x 5 + 1 dx.
      33. a) Integrate
      sin x + 18 cos x
      3 sin x + 4 cos x
      w.r.t. x. 3
      b) Evaluate ⌡  ⌠1 – x 1 + x dx. 2
      34. Find the area of x 2 + y 2 = 6 by integration. 5

      PART – D

      Answer any two of the following questions : 2 × 10 = 20

      35. a) Derive a condition for y = mx + c to be a tangent to the hyperbola
      x 2 a 2 – y 2 b 2 = 1. Also, find the point of contact. Using the condition
      derived, find the equations of tangents to
      x 216 – y 212 = 1, which are
      parallel to x – y + 5 = 0. 6
      b) Prove that
      1     a     a 2 + bc
       
      1     b     b 2 + ca
       
      1     c     c 2 + ab
        = 2 ( a – b ) ( b – c ) ( c – a ). 4
      36. a) State De Moivre's theorem. Prove it for positive and negative integral
      indices. Using it prove that
      Z 10 – 1
      Z 10 + 1
      = i tan 5θ if
      Z = cos θ + i sin θ. 6
      b) Find the general solution of cos 2θ = 2 ( cos θ – sin θ ) . 415 Code No. 35
      37. a) The volume of a sphere increases at the rate of 4π c.c./sec. Find the
      rates of increase of its radius and surface area when its volume is
      288 π c.c. Also find (i) the change in volume in 5 secs, (ii) rate of
      increase of volume w.r.t. radius when the volume is 288 π c.c. 6
      b) Obtain the equations of parabolas having ( 1, 5 ) and ( 1, 1 ) as ends
      of the latus rectum. 4
      38. a) Prove that ⌡  ⌠0π
      x dx a 2 cos 2 x + b 2 sin 2 x= π 2 2ab . 6
      b) Find the particular solution of xy ( )  1 + x 2 
      dy dx– y 2 = 1, given
      that, when x = 1, y = 0. 4

      PART – E

      Answer any one of the following questions : 1 × 10 = 10

      39. a) If | |  
      → a + 
      → b + 
      → c   = | |  
      → a + 
      → b – 
      → c   , find the angle between
      → a +
      → b and
      → c . 4
      b) Among all right-angled triangles of a given hypotenuse, show that the
      triangle which is isosceles has maximum area. 4
      c) Find the fourth roots of 16 cis
      π
      2 . 2Code No. 35 16
      40. a) If 2 150 × 3 12 × 135 ≡ a ( mod 7 ), find the least positive remainder
      when a is divided by 7. 4
      b) Given the circles 2 ( )  x 2 + y 2  – 12x – 4y + 10 = 0 and
      x 2 + y 2 + 5x – 13y + 16 = 0, find the length of their common
      chord.  4
      c) Evaluate ⌡⌠02x2 – x + x dx. 2


      Did you like this resource? Share it with your friends and show your love!




      Responses to "Karnataka 2nd PUC MATHEMATICS(July, 2009) Question Paper"

      No responses found. Be the first to respond...

      Feedbacks      

      Post Comment:




    • Do not include your name, "with regards" etc in the comment. Write detailed comment, relevant to the topic.
    • No HTML formatting and links to other web sites are allowed.
    • This is a strictly moderated site. Absolutely no spam allowed.
    • Name:   Sign In to fill automatically.
      Email: (Will not be published, but required to validate comment)



      Type the numbers and letters shown on the left.


      Submit Article     Return to Article Index

      Copyright © SpiderWorks Technologies Pvt Ltd., Kochi, India
      All Rights Reserved.